New paper accepted – Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants

Together with his latin colleagues, Ülo Niinemets has published another paper regarding mesophyll conductance in C3 plants in Plant, Cell and Environment. Accepted, but not edited nor typesetted version of the article is available from here.

Full citation: Flexas, J., Díaz‐Espejo, A., Conesa, M. A., Coopman, R. E., Douthe, C., Gago, J., … & Niinemets, Ü. (2015). Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant, Cell & Environment, DOI: 10.1111/pce.12622 (link to prepublished article)

The difference between C4 and C3 plants


Water limitation is a major global constraint for plant productivity that is likely to be exacerbated by climate change. Hence, improving plant water use efficiency (WUE) has become a major goal for the near future. At the leaf level, WUE is the ratio between photosynthesis and transpiration. Maintaining high photosynthesis under water stress, while improving WUE requires either increasing mesophyll conductance (gm) and/or improving the biochemical capacity for CO2 assimilation – in which Rubisco properties play a key role, especially in C3 plants at current atmospheric CO2.

The goals of the present analysis are: (1) to summarize the evidence that improving gm and/or Rubisco can result in increased WUE; (2) to review the degree of success of early attempts to genetically manipulate gm or Rubisco; (3) to analyze how gm, gsw and the Rubisco’s maximum velocity (Vcmax) co-vary across different plant species in well-watered and drought-stressed conditions; (4) to examine how these variations cause differences in WUE and what is the overall extent of variation in individual determinants of WUE; and finally, (5) to use simulation analysis to provide a theoretical framework for the possible control of WUE by gm and Rubisco catalytic constants vis-à-vis gsw under water-limitations.

Picture is from here.
This entry was posted in New paper accepted and tagged , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s