New publication – TRY plant trait database – enhanced coverage and open access

Text by Lauri Laanisto

There is hardly anyone doing plant ecology and physiology who is not aware of the TRY database. No need to introduce it, really… TRY started in 2011, and now the second paper about the database is published. With pretty impressive author´s list. As I´ve heard, everyone who had added data to TRY between 2011 and 2019 was invited to be a coauthor. I guess it is a nice way to thank the collaborators with a publication which will be highly-cited. (The first paper has received so far more than 1600 citation according to GScholar; and the new one already has 4 citations.) Once per 10 years it is ok…

Go and use and improve TRY – that is the message here. It´s (more) open now. That´s it! So, I will try something completely different.

One of the most known joke about Estonians among our neighbors is the following: An Estonian is in the zoo. Staring a rhino. And thinking – I wonder what he is thinking of me. We worry about that. A lot… Which is why I compared how we are doing TRY-wise in comparison with our neighbors.

There are 9 coauthors with affiliations to Estonian research institutions:

Kairi Adamson from Tartu Observatory

Aveliina Helm, Ivika Ostonen, Leho Tedersoo, Meelis Pärtel, Kersti Riibak from Institute of Ecology and Earth Sciences, University of Tartu

Ülo Niinemets, Giacomo Puglielli from Estonian University of Life Sciences

Angelika Portsmuth from Institute of Ecology, Tallinn University

But zero Latvians and zero Lithuanians. And only two Finns!

Great success!

Citation: Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P., … & Acosta, A. T. (2020). TRY plant trait database–enhanced coverage and open access. Global change biology, 26 (1): 119-188 (link to full paper)

Posted in New paper published | Tagged , , , , | Leave a comment

New paper – Predictability of leaf morphological traits for paleoecological reconstruction: the case of leaf cuticle and leaf dry mass per area

Text by Linda-Liisa Veromann-Jürgenson and Tiina Tosens

We just published a paper about the plausibility of using cuticle thickness in gymnosperms as a proxy for leaf mass per dry area (LMA). It was as the result of a wonderful collaboration between six academic institutes from four countries. The paper titled “Predictability of leaf morphological traits for paleoecological reconstruction: the case of leaf cuticle and leaf dry mass per area” is one of the two papers representing our team in the International Journal of Plant Sciences special issue – Functional Trait Evolution.

The reasoning behind this paper was to test a paleoproxy for estimating LMA from cuticle thickness (CT) in broad-leaved gymnosperms, and expand it across different foliage types and through the light gradient. This LMA-CT paleoproxy is a very attractive concept for assessing past ecosystem properties as cuticles are much more likely to be preserved in fossils than mesophyll. At the same time LMA is connected to many traits underlying the leaf economics spectrum as well as to some growth conditions like CO2 concentration and light availability. Paleoproxies are indeed a great tool to reconstruct the past environmental and ecological conditions for the plant, whose minute piece paleobotanists are studying millions of years later. However, as large generalizations are made based on tiny tiny preserved plant bits, we must make sure the correlations hold across many species and in different conditions. Thus, we tested the LMA-CT relationship on 86 gymnosperm species with broad leaves, needles and scales and used a sub-set to study the effect of growth light conditions on CT as its effect on LMA has been previously well established.

The relationship between LMA and CT in different leaf form types (graph from the paper)

Our results were promising! The proxy could be used for broad- and scale-leaved species, while the correlation does not hold for needles. Importantly, the reliability of the proxy increases for species at the lower end of the leaf economic spectrum (LES) – for species with tough robust leaves with high LMA – which is good considering that many of the so-called “living fossils” belong to that end of LES. However, we advise caution as taxonomy and light conditions affected the LMA-CT relationship, so just measuring CT from a diverse set of fossils may give you wrong results. Further tests distinguishing the morphotype of the fossilized leaf and the LMA-CT relationship in the nearest living relatives should be carried out. Nevertheless, CT on itself can give valuable information about the environmental conditions and stresses for the plant!

Full citation: Veromann-Jürgenson, L. L., Brodribb, T., Laanisto, L., Bruun-Lund, S., Niinemets, Ü., Nuño, S. L., Rinnan, R., Puglielli, G. & Tosens, T. (2019). Predictability of Leaf Morphological Traits for Paleoecological Reconstruction: The Case of Leaf Cuticle and Leaf Dry Mass per Area. International Journal of Plant Sciences, 181(1), (link to full text)

A living fossil in its natural habitat in Australia (pic by Linda-Liisa)


Our power to predict the future relies on our knowledge of the past. Paleoproxies are a powerful tool for understanding environmental and ecological conditions, and changes across different time periods. However, constructing a functioning paleoproxy requires a well-constrained and robustly tested model. This is challenging, especially if ecological traits are involved. In the current study we constructed an extended dataset to test the reliability of the derivation of leaf dry mass per unit area (LMA) from the thickness of fossil gymnosperm cuticle. Specifically, we tested if different leaf types (broad leaves, needles, scales), intraspecific variability in cuticle thickness, and growing conditions affect the functioning of the proxy. Taxonomic groups were analyzed to uncover the possible taxonomic influence on LMA, cuticle thickness and the LMA-CT relationship. Our results indicate that the cuticle thickness versus LMA relationship depends on multiple factors that can have various and incongruous effects on this relationship, depending especially on leaf type and growing conditions. We conclude that cuticle thickness measured from gymnosperm fossils could be used as a proxy for LMA in past ecosystems for some broad- and scale-leaved, but not needle-leaved gymnosperms. However, caution must be taken when comparing species from different environments or growth conditions.

Posted in New paper published | Tagged , , , , , , , , , , , , , , , | Leave a comment

Welcome Upasana – new PhD student to study cryptogam diversity and stress tolerance

Text and pic by Upasana Sharma

Hello! It’s my pleasure to introduce myself ―  I am Upasana Sharma from India, pursuing my PhD in Estonian University of Life Sciences (Environmental sciences and applied biology) under the supervision of Professor Ülo Niinemets and Dr. Kristiina Mark.  First of all, I wish to thank my supervisors who found me suitable for the position and selected me for the program.

I am extremely happy to be a part of one of the best plant physiology labs in Europe, lead by a renowned plant physiologist prof. Ülo Niinemets and his team.

I completed my masters (M.Sc. in Botany) from University of Allahabad, India in 2015. Later on, I worked as a science teacher in a school for two years. Then again came back to the research field which was my core interest. After qualifying a National Eligibility Test (CSIR- NET/JRF) for lectureship as well as for research I joined as a junior research fellow the lichenology lab of CSIR- National botanical research Institute (NBRI), Lucknow, India in 2018.  One day while working in NBRI I got informed about the PhD position in physiology and ecology of cryptogams in the Estonian University of Life Sciences. The topic was interesting and related to lichens and mosses as I was already working in lichenology. So I was pretty excited to get the opportunity and to gain more knowledge about the physiological and ecological aspect of cryptogams. I applied for the position and was fortunate enough to get selected  after many formalities and paperwork.

I will work on the topic “ Cryptogam-associated  green algal diversity and stress tolerance in the perspective of global change” during my PhD.  As we know, people are working more and more focused on higher plants while cryptogams are less explored. But we should not ignore the crucial role of cryptogams in the ecosystems.   

I am also thankful to our plant physiology group members Tiia, Pille, Helina, Piret, and others, who have been very helpful. I am looking forward to give my best in contribution to science as a researcher, and as a person, always try to be a better version of me.

 Plethora of thanks!

Posted in New member | Tagged , , , , , , , | Leave a comment

Welcome José Ángel – new PhD student to study lichen productivity

Text and pic by José Ángel

I am José Ángel from Spain, and I am starting my PhD here at the Estonian University of Life Sciences.

I am really grateful to have the opportunity to continue my scientific formation as a PhD student, and especially with a remarkable team lead by Professor Ülo Niinemets.

I graduated at the University of Malaga (Spain) back in 2015. I worked as an administrative assistant later on, and finally in 2018 they selected me to be part of a research group at the University of Seville (Spain), where I worked in the Ecology and Plant Biology department assessing the impact of an invasive plant species, Oenothera drummondii, and identifying  which traits contribute to its invasive success. The project was about to end in the middle of 2019, and before that I saw I post from Kristiina Mark about the opportunity for pursuing PhD studies here at the Estonian University of Life Sciences. I wrote her right away, and after tons of papers and procedures I was luckily selected and I´m today (really happy) here.

During the next years I will be working mostly with mosses and lichens, with the topic of ¨Cryptogam productivity in different climatic conditions¨. They are normally wrongly considered ¨lower plants¨ and have much to say in the configuration of ecosystems. I would like to play my part in science and generate a positive impact on the group as well as to learn as much as possible. See you around!

| Tagged , , , , , , , , | Leave a comment

Interview with Steffen

Conducted and written by Sven Paulus, originally published in Research in Estonia portal

Järvselja´King´s pine (pic from Wikipedia)

Estonia’s only primordial forest hosts a SMEAR research station, led by Steffen Noe, a Senior Researcher at University of Life Sciences. One of his research interests is how the forest affects the atmosphere and vice versa. What is his story and why did a German citizen decide to move to Estonia 15 years ago?

We are at the Station for Measuring Ecosystem-Atmosphere Relations. What exactly do you measure here?

We measure the composition of greenhouse gases and reactive trace gases such as ozone, sulfur dioxide, and nitrogen oxides in air. We examine how the forest affects the atmosphere and vice versa. We started with official mast measurements in 2015 and have been continuously measuring for four years now.

If we look at the measurement data, then what processes are taking place in this area?

We are able to observe how the amount of carbon dioxide in the atmosphere increases and what the additional local effects are. In this way, we capture the annual carbon dynamics and relate it to local forest management and weather conditions. Last year was very dry and we could see what is happening in the forest in the case of water scarcity. It is possible to monitor how the exchange processes between the forest and the atmosphere take place, and what affects the course of these processes.

Science sometimes gives answers, but it raises more questions. We are heading for Big Data, because the mast measures the environment all year round, and our server gets 8 million rows of data from the sensors every day. Their analysis can produce very good statistics and compare these processes with data from other stations, as well as with previously measured data. This allows us to see a wider picture.

Secondly, we can provide meteorological measurement services such as local winds, precipitation and temperature. We work with colleagues from the University of Tartu to measure air ions and airborne particles, as well as solar radiation. One very important aspect is to see how the forest affects the formation of clouds.

Based on current data, can any patterns be identified here at Järvselja?

We can analyse how the forest absorbs carbon in our protected and unmanaged patch of forest. Then we compare it with the carbon emissions of the local managed forest. The results of the last four years indicate that both carbon absorption and emission are faster in young managed forests. The old forest is growing slower and absorbs less carbon over time. Their net weight is very similar, but the big difference is in the speed of the processes.

If we want to manage the forest in a way that it would be a net absorber of carbon, we can find different approaches, which take the age and the area of that forest into account. It is very good to use data from measuring stations to plan such forest management.

In Estonia, there has been a major debate on forestry in recent years. Some say more forest should be cut and managed. Others, however, think that too much is being harvested and that various species are becoming extinct. How do you feel about this situation?

It must be understood that there are different possibilities. The forest is not only a carbon absorber but can be a carbon emitter during a very dry year. In 2018, we measured that since the drought of July, the forest was an emitter of carbon until the end of that year. Colleagues from the University of Tartu and I took measurements in an old pine forest, which was a carbon absorber during the same period. This shows that we cannot take it unequivocally but need to understand how the system works. Then it is possible to decide whether the forest should be managed or not.

This is partly a scientific debate, and the second debate should be a social one. We need to understand what ecosystem services the forest is giving us. In addition to carbon absorption, the forest also provides raw material and controls the reserve and purification of water. As Estonia is more or less flat, and we do not have glaciers, it is necessary that enough clouds form here and that they can get enough water from the ground for precipitation.

At the moment, we predict that Estonia’s future weather will be moist and there will be more precipitation. A very important factor to consider is that the forest buffers all this water. In the case of growing forest resources, the question is how to use it: to make wood pellets and firewood or to allow the forest to grow longer. For example, making paper is a very short-term use of the forest, because wood could also be used to make long-lasting products. It should also be considered how to use the forest as a resource that encourages a reduction in the use of carbon from fossil fuels. Here lies the great opportunity for development.

We need to think about how to use the data already available and include remote sensing at the next level to see the wider dynamics of forest management. If the climate keeps changing, perhaps more dry summers and more damp winters will come, then there will also be more pests and wind. Therefore, a wider picture, both spatial and temporal, is needed to understand the whole system.

Another issue is the emergence of clouds, which we have studied in cooperation with the universities of Helsinki and Tartu. Over the last decade, thanks to our collaboration with the Finns, we have written several articles on how one feedback loop works. We see how forest growth and biomass production change cloud formation through volatile air particles and ions. My own interest is how pollution from air transport affects all of this.

What made you move from Germany to Estonia?

It was very random. I had completed my doctoral thesis and then the sources of finance for my research centre in Germany changed. I got a tip from my colleagues that I could find a job in Ülo Niinemets’s research team in Estonia. My first job was under the Marie Curie project, that supports exchange of researchers. I stayed in Estonia because I saw an opportunity to pursue my research here.

When you arrived here fifteen years ago, you took your family with you. How long did you originally plan to stay?

The original plan was to stay for up to three years, as envisaged by the agreement. After that I received funding from the Estonian side for my own project to study volatile compounds in the energy crops. Another factor was that my network grew towards Finland and Sweden. It was also important that Estonia, due to its small size, is flexible and capable of changing rapidly.

It is also a question of the long-term perspective for the family. Furthermore, I realised that I could follow my vision and achieve something here. Today, we are in a very difficult situation on the research funding side and I think we need a public debate so that we can put our long-term goals in place. If you do not have a goal or it is short-term, there is a great risk that development will not occur at all.

How did you adapt to the Estonian society and how quickly did you learn Estonian?

In 2004, there were fewer opportunities than today with the EURAXESS platform, which provides advice on language courses and other local issues. At the beginning of this work, I had to do it myself and manage to speak Estonian. Initially, I sat down with a computer using a dictionary. In the spring of 2005, I started studying Estonian at the German Cultural Institute in Tartu. When our working group moved from Tartu University to the University of Life Sciences in 2008, I spoke to new colleagues already in Estonian, as my language practice had increased.

Speaking of adapting to Estonian society, we bought a house here and our daughter went to the local kindergarten and school. We became more familiar with people at parents’ meetings, as well as interacting with people at universities.

What advice would you give to a student or academic coming here from abroad?

One trick is to try and connect with people and get to know them. This will give you a better idea of ​​what is going on around you. Another very good tip in Finland or Estonia is to go to the sauna with people, because it is much easier to talk to them there.

Posted in Other news | Tagged , , , , , , | Leave a comment

Kaia visiting Copenhagen

Text and pic by Kaia Kask

From 04-08.11.2019 I participated in a course named “Biogenic Volatiles – Exchange at Different Scales and Interactions with Ecosystem Processes” in Denmark, organized by Roger Seco, Tao Li and Riikka Rinnan from the University of Copenhagen. In total 30 PhD students were taking part in this course from different countries. We had two key speakers: Professor Jörg-Peter Schnitzler from Germany and Professor Pawel K. Misztal from USA. We also visited Copenhagen Botanical Garden and sniffed some plant odor. In addition to listening, students also had to participate in a group work and present the outcome. In total, these five days were very informative and interesting and it was a pleasure to meet other students in the same study area. One thing that caught my eye was that it was kind of popular among students to have some plant related tattoo. Keeping the plants closer!

I would like to thank DORA Plus T1.1 for supporting this visit.  

Posted in Conference/Meeting | Tagged , , , , , | Leave a comment

Workgroup and EcolChange seminar – Jose and Upasana about invasive plants and lichenous bioindicators

Seminar of Chair of Crop Science and Plant Biology and Centre of Excellence EcolChange, Estonian Univ of Life Sciences

This time we have two new PhD-students, Jose from Spain and Upasana from India, presenting what they have been working on before coming to Estonia.

José Ángel Morales Sánchez is a PhD-student in the Estonian University of Life Sciences.

Title of his talk: Oenothera drummondii: an invasive plant species threatening coastal ecosystems

Upasana Sharma is a PhD-student in the Estonian University of Life Sciences.

Title of her talk: Assessment of potential of lichens as bioindicator of pollution gradient in Mirzapur, Sonbhadra regions of Eastern Uttar Pradesh, India

Time: Monday, 2. December 2019 at 12.00

Place: Tartu, Kreutzwaldi 5 – D267 (Metsamaja)

Coastal lichens (pic from here)
Posted in New member, Seminar/Lecture | Tagged , , , , , , , , | Leave a comment